Learning Integrated Holism-Landmark Representations for Long-Term Loop Closure Detection

نویسندگان

  • Fei Han
  • Hua Wang
  • Hao Zhang
چکیده

Loop closure detection is a critical component of large-scale simultaneous localization and mapping (SLAM) in loopy environments. This capability is challenging to achieve in longterm SLAM, when the environment appearance exhibits significant long-term variations across various time of the day, months, and even seasons. In this paper, we introduce a novel formulation to learn an integrated long-term representation based upon both holistic and landmark information, which integrates two previous insights under a unified framework: (1) holistic representations outperform keypoint-based representations, and (2) landmarks as an intermediate representation provide informative cues to detect challenging locations. Our new approach learns the representation by projecting input visual data into a low-dimensional space, which preserves both the global consistency (to minimize representation error) and the local consistency (to preserve landmarks’ pairwise relationship) of the input data. To solve the formulated optimization problem, a new algorithm is developed with theoretically guaranteed convergence. Extensive experiments have been conducted using two large-scale public benchmark data sets, in which the promising performances have demonstrated the effectiveness of the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Online Sparsity-Cognizant Loop-Closure Algorithm for Visual Navigation

It is essential for a robot to be able to detect revisits or loop closures for long-term visual navigation. A key insight is that the loop-closing event inherently occurs sparsely, i.e., the image currently being taken matches with only a small subset (if any) of previous observations. Based on this observation, we formulate the problem of loop-closure detection as a sparse, convex `1-minimizat...

متن کامل

Sparse optimization for robust and efficient loop closing

It is essential for a robot to be able to detect revisits or loop closures for long-term visual navigation. A key insight explored in this work is that the loop-closing event inherently occurs sparsely, i.e., the image currently being taken matches with only a small subset (if any) of previous images. Based on this observation, we formulate the problem of loop-closure detection as a sparse, con...

متن کامل

Considering Pricing Problem in a Dynamic and Integrated Design of Sustainable Closed-loop Supply Chain Network

Flexible and dynamic supply chain network design problem has been studied by many researchers during past years. Since integration of short-term and long-term decisions in strategic planning leads to more reliable plans, in this paper a multi-objective model for a sustainable closed-loop supply chain network design problem is proposed. The planning horizon of this model contains multiple strate...

متن کامل

Bound feature combinations in visual short-term memory are fragile but influence long-term learning

We explored whether individual features and bindings between those features in VSTM tasks are completely lost from trial to trial or whether residual memory traces for these features and bindings are retained in long-term memory. Memory for arrays of coloured shapes was assessed using change detection or cued recall. Across trials, either the same colour-shape (integrated object) combinations w...

متن کامل

Towards Persistent Localization and Mapping with a Continuous Appearance-based Topology

Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017